2020 Dietary Guidelines Advisory Committee: Dietary Fats and Seafood Subcommittee

Linda Snetselaar (Chair)

Regan Bailey Joan Sabaté Linda Van Horn

Advisory Chair Rep: Barbara Schneeman

DietaryGuidelines.gov

Subcommittee Status

- NESR staff screening articles and preparing evidence portfolios
 - **40,523** articles have been or are in the process of being screened and additional searches underway
 - Implementing protocols:
 - **Dietary fats** and cardiovascular disease
 - **Dietary fats** and all-cause mortality
- Subcommittee drafted conclusions
 - **Seafood** during pregnancy/lactation and neurocognitive development
 - Seafood during childhood/adolescence and neurocognitive development/health
 - Seafood during childhood/adolescence and cardiovascular disease
- Remaining work
 - **Dietary fats** and neurocognitive development/health
 - Dietary fats and cancer

Key Definitions

 Seafood – Marine animals that live in the sea and in freshwater lakes and rivers. Seafood includes fish (e.g., salmon, tuna, trout, tilapia) and shellfish (e.g., shrimp, crabs, oysters) (Source: 2015-2020 DGA)

3 Seafood Systematic Review Questions

Intervention/Exposure		Outcomes	
1	Seafood consumption during pregnancy and lactation	 Neurocognitive development of the child Developmental outcomes (4 domains) ADD /ADHD ASD Academic Performance Anxiety & Depression 	
2	Seafood consumption during childhood and adolescence	 Neurocognitive development and health Developmental outcomes (4 domains) ADD /ADHD ASD Academic Performance Anxiety & Depression (childhood & adulthood) Cognitive decline (adulthood) 	
3	Seafood consumption during childhood and adolescence	 Risk of CVD Intermediate: BP, HDL, LDL, TC, TG End-point: CVD, stroke, venous thrombosis 	

4

Seafood Question #1

What is the relationship between **seafood consumption** during <u>pregnancy/lactation</u> and **neurocognitive development** of the infant?

Approach to Answer Question: NESR Systematic Review

Analytic Framework Seafood intake during pregnancy/lactation

Systematic review question: What is the relationship between seafood consumption during pregnancy and lactation and neurocognitive development in infants?

Intervention/exposure	vs Comparator		Endpoint outcomes			
Seafood consumption (type, source, amounts, frequency, and/or timing of exposure)	Different types, sources, and/or amounts of seafood consumed; Different frequency of and/or timing of seafood consumption		 Developmental domains, examined via milestone achievement and/or scales/indices, including Cognitive, Language/communication, Movement/physical, Social-emotional Academic performance Attention deficit disorder (ADD) or attention-deficit/hyperactivity disorder 			
Population: Women du lactation; healthy and/or	ring pregnancy and/or at risk for chronic disease	(ADHD) • Anxiety				
	* *********		DepressionAutism spectrum disorder (ASD)			
	**********	*******	Population: Infants and toddlers (birth to 24 months), children and adolescents (ages 2-18 years)			
······································						

Key Confounders: Child sex, Child age, Maternal age, Race/ethnicity, Socioeconomic status, Alcohol intake, Non-fish dietary exposure to n-3 polyunsaturated fatty acids (PUFAs), Smoking, Maternal anthropometrics, Child's birth weight, Gestational age, Parental education, Parity

Outcome Specific Key Confounders: ADD, ADHD, Anxiety, ASD, Depression: Family history of neurocognitive disorders. **Other factors to be considered:** Key nutrients in seafood (e.g., n-3 PUFAs, iodine, selenium, iron, fish protein, vitamin D); Environmental chemicals (e.g., mercury, persistent organic pollutants, and polychlorinated biphenyls); Blood and human milk biomarkers of seafood intake (e.g., n-3 PUFA, and environmental pollutants), mother (e.g., venous/umbilical cord, placenta, red blood cell) and child (e.g., arterial/umbilical cord) EPA, DHA, iron, iodine, selenium, protein, vitamin D; infant feeding mode

6

Inclusion/Exclusion Criteria Seafood intake during pregnancy/lactation

Category	Inclusion Criteria	Exclusion Criteria
Intervention/ exposure	 Seafood consumption measured prior to outcome assessment Type (e.g., salmon, tuna bass) Source (e.g., sea fresh water, farmed, wild) Amount/frequency of intake Timing of exposure (e.g., age at intake) Dietary intake (e.g., from food frequency questionnaires, dietary recall, fish/seafood screeners) may be validated with biomarkers for PUFA or MeHg, but not substituted. 	 No measure of seafood consumption (i.e., studies that only examined biomarkers for consumption) Omega-3 supplement studies which do not evaluate seafood consumption Studies evaluating infant formula with added DHA and/or EPA
Comparator	 Different types, sources, amounts, frequency, and/or timing of exposure of seafood consumption 	No comparator

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Literature Search and Screening Results Seafood intake during pregnancy/lactation

This search addressed <u>two</u> systematic review questions related to seafood consumption and neurocognitive outcomes.

Pregnancy studies:

- Developmental Domains: 24 studies
- ADD/ADHD: 4 studies

ASD: 3 studies

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

*2 articles included in both reviews

Multiple Outcomes = Multiple Conclusion Statements

Developmental Domains:

- Cognitive
- Language and communication
- Movement and physical
- Social-emotional and behavioral

Academic Performance

Attention deficit disorder (ADD) or attentiondeficit/hyperactivity disorder (ADHD)

Autism spectrum disorder (ASD)

Anxiety

Depression

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Previously Presented Conclusion Statements Seafood intake during pregnancy/lactation

Grade not assignable:

- Attention deficit disorder (ADD) or attentiondeficit/hyperactivity disorder (ADHD)
- Autism spectrum disorder (ASD)
- Academic Performance
- Anxiety
- Depression

No evidence

Insufficient evidence

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

New Draft Conclusion Statements Seafood intake during pregnancy/lactation

What is the relationship between **seafood consumption** during <u>pregnancy/lactation</u> and **neurocognitive development** of the infant?

Developmental Domains:

- Cognitive
- Language and communication
- Movement and physical
- Social-emotional and behavioral

Seafood intake during lactation Developmental domain outcomes

Description of the Evidence

No studies that met inclusion criteria assessed the relationship between maternal **seafood intake** during <u>lactation</u> and **neurocognitive developmental** outcomes in the child.

> Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood intake during pregnancy Developmental domain outcomes

Description of the Evidence

Study characteristics

- 24 articles from 18 prospective cohort studies
- Primarily conducted in the US and Europe

Maternal seafood exposure

- Primarily measured via FFQ
 - Timing, type, and amounts varied
- Categorization of seafood intake varied across studies (e.g., quintiles, servings/week)

Outcomes

• Variety of tools used within each outcome domain

Seafood intake during pregnancy Cognitive development

- 20 articles from 15 prospective cohorts
- The majority of studies detected positive or null associations between seafood intake during <u>pregnancy</u> and:
 - Cognitive development in children 5 months to 11 years
 - IQ or composite intelligence measures in children 4 to 11 years
- Few studies accounted for all key confounders
- Heterogeneity in:
 - Seafood intake categories used in analyses
 - Cognitive assessment methods

Seafood intake during pregnancy Cognitive development, continued

Draft Conclusion Statements

<u>Moderate evidence</u> suggests that seafood intake during <u>pregnancy</u> is associated with improvements in cognitive development in the child.

Grade: Moderate (pregnancy)

<u>No evidence</u> is available to determine the relationship between seafood intake during <u>lactation</u> and cognitive development in the child.

Grade: Grade not assignable (lactation)

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood intake during pregnancy Language & communication development

- 14 articles from 12 prospective cohorts
- Majority of studies detected a beneficial or null association
 - In children 6 months to 11 years of age
- Few studies accounted for all key confounders
- Heterogeneity in:
 - Maternal seafood intake (timing, type, amount)
 - Seafood categorization at analysis
 - Outcome assessment tools
 - Ages of children at assessment

Seafood intake during pregnancy Language & communication development, continued

Draft Conclusion Statements

<u>Moderate evidence</u> suggests that seafood intake during <u>pregnancy</u> is associated with improvements in language and communication development in the child.

Grade: Moderate (pregnancy)

<u>No evidence</u> is available to determine the relationship between seafood intake during <u>lactation</u> and language and communication development in the child.

Grade: Grade not assignable (lactation)

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood intake during pregnancy Movement and physical development

- 13 articles from 9 prospective cohorts
- Majority of studies found either null or beneficial associations
- Few studies accounted for all key confounders
- Heterogeneity in:
 - Maternal seafood intake (timing, type, amount)
 - Types of movement and physical development examined
 - Outcome assessment tools
 - Ages of children at follow-up

Seafood intake during pregnancy Movement and physical development, continued

Draft Conclusion Statements

<u>Insufficient evidence</u> is available to determine the relationship between seafood intake during <u>pregnancy</u> and movement and physical development in the child.

<u>No evidence</u> is available to determine the relationship between seafood intake during <u>lactation</u> and movement and physical development in the child.

Grade: Grade not assignable (pregnancy and lactation)

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood intake during pregnancy Social-emotional & behavioral development

- 9 articles from 6 prospective cohorts
- No apparent trends across studies
 - Mostly non-significant associations
- Concern for risk of bias
 - Few studies accounted for all key confounders
 - Measurement of exposures and outcomes
 - Reliance on parental-report for most outcomes
- Heterogeneity in:
 - Maternal seafood intake (timing, type, amount)
 - Ages of the children at follow-up (6 months to 13 years)
 - Outcome assessment tools
 - Dimensions of social-emotional and behavioral development

Seafood intake during pregnancy Social-emotional & behavioral development, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is available to determine the relationship between seafood intake during <u>pregnancy</u> and social-emotional and behavioral development in the child.

<u>No evidence</u> is available to determine the relationship between seafood intake during <u>lactation</u> and socialemotional and behavioral development in the child.

Grade: Grade not assignable (pregnancy and lactation)

Seafood during pregnancy/lactation and neurocognitive development 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood Question #2

What is the relationship between **seafood consumption** during <u>childhood and</u> <u>adolescence</u> and **neurocognitive development**?

Approach to Answer Question: NESR Systematic Review

Analytic Framework Seafood intake during childhood/adolescence

Systematic review question: What is the relationship between seafood consumption during childhood and adolescence and neurocognitive development?

Key Confounders: Child sex, Child age, Race/ethnicity, Socioeconomic status, Infant feeding mode, Non-fish dietary exposure to n-3 PUFAs, Smoking, Parental education

Outcome Specific Key Confounders: ADD, ADHD, Anxiety, ASD, Depression, Alzheimer's (all ages): Family history of neurocognitive disorder.

Other factors to be considered: Key nutrients in seafood (e.g., n-3 PUFAs, iron, iodine, selenium, fish protein, vitamin D); Environmental chemicals (e.g., mercury, persistent organic pollutants, and polychlorinated biphenyls); Blood biomarkers of seafood intake (e.g., n-3 PUFAs, and environmental pollutants)

Literature Search and Screening Results Seafood intake during childhood/adolescence

This search addressed <u>two</u> systematic review questions related to seafood consumption and neurocognitive outcomes.

Child studies

- Developmental domain: 10
- ADD/ADHD: 2
- ASD: 0
- Anxiety and depression: 2
- Academic performance: 1

*2 articles included in both reviews

Seafood intake during childhood/adolescence Description of the Evidence – All outcomes

13 total articles

- RCTs and PCS
- 3 RCTs (6 articles)
 - RCT (Germany) & FINS-KIDS (Norway) both in children 4 to 6 years
 - Consumed fatty fish meals compared to meat meals 3x/week for 16 weeks
 - FINS-TEENS (Norway) in adolescents 14 to 15 years
 - Consumed fish meals compared to meat meals 3x/week for 12 weeks
 - Outcomes
 - Assessed before and after the trial
 - Assessment tools varied

Seafood intake during childhood/adolescence Description of the Evidence – All outcomes, continued

13 total articles

- RCTs and PCS
- 6 prospective cohorts (7 articles)
 - Countries: UK, Sweden, China, Canada
 - Exposures
 - Seafood intake during <u>childhood</u>: i.e., oily fish, fish intake
 - Majority of studies assessed seafood intake via food frequency questionnaire (FFQ)
 - Outcomes
 - Variety of tools used within each outcome domain
 - Assessed in children 3 to 18 years of age
 - No PCS accounted for all key confounders

Seafood intake during childhood/adolescence Developmental outcomes

Study characteristics

- Cognitive: 7 articles (4 RCT, 3 PCS)
- Language and communication: 5 articles (3 RCT, 2 PCS)
- Movement and physical: 2 articles (2 RCT)
- Social-emotional and behavioral: 3 articles (2 RCT, 1 PCS)

Majority of studies were conducted in northern Europe, particularly in Scandinavian countries.

Seafood intake during childhood/adolescence Cognitive development

- 4 articles from 3 RCTs (Germany and Norway)
 - Predominantly null or beneficial effects of seafood compared to meat meals in children 4-6 years and 14-15 years of age
- 3 articles from 3 PCS (China, Sweden, UK)
 - Beneficial associations were found between child seafood intake (9 to 15 years) and cognitive development in children 12 to 18 years of age
 - No association was found between child seafood intake and cognitive development at 3.5 years

Seafood intake during childhood/adolescence Cognitive development, continued

Draft Conclusion Statements

<u>Insufficient evidence</u> is available to determine whether seafood intake during childhood and adolescence is associated with <u>improvements</u> in cognitive development in children and adolescents.

Grade: Grade not assignable (improvements)

<u>Moderate evidence</u> suggests that seafood intake during childhood and adolescence <u>does not have detrimental</u> <u>impacts</u> on cognitive development in children and adolescents.

Grade: Moderate (no detrimental impact)

Seafood intake during childhood/adolescence Language and communication development

- 3 articles from 2 RCTs (Germany and Norway)
 - No effect of fish compared to meat meals on language and communication development at 4-6 years
- 2 articles from 2 PCS (China and Sweden)
 - Positive associations were found
 - Language/communication in children 9 to 15 years of age
 - Verbal IQ in children 12-18 years of age
- Heterogeneity in:
 - Child seafood intake (timing, type, amount, and duration)
 - Ages of children at assessment
 - Outcome assessment tools

Seafood intake during childhood/adolescence Language and communication development, continued

Draft Conclusion Statements

<u>Insufficient evidence</u> is available to determine whether seafood intake during childhood and adolescence is associated with <u>improvements</u> in language and communication development in children and adolescents.

Grade: Grade not assignable (improvements)

<u>Moderate evidence</u> suggests that seafood intake during childhood and adolescence <u>does not have detrimental impacts</u> on language and communication development in children and adolescents.

Grade: Moderate (no detrimental impact)

Seafood intake during childhood/adolescence Movement and physical development

2 articles from 2 RCTs

- Countries: Germany and Norway
- Age: 4-6 years
- Intervention: Fatty fish versus meat meals
- Assessment tool: nine hole peg test
- Found predominantly null effects on manual dexterity and fine motor coordination
 - One RCT found beneficial effect on fine manual dexterity and fine motor coordination only in the non-dominant hand

Seafood intake during childhood/adolescence Movement and physical development, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is available to determine the relationship between seafood intake during childhood and movement/physical development in children.

Grade: Grade not assignable

Seafood intake during childhood/adolescence Social-emotional & behavioral development

- 2 articles from 2 RCTs (Norway)
 - No effect of fish meal, compared to meat meals, on social-emotional and behavioral development in children at 4-6 years and 14 to 15 years of age
- 1 article from 1 PCS (UK)
 - A null association was found between seafood intake (3 years) and social-emotional and behavioral development in children at 4-13 years of age
- All studies used the Strengths and Difficulties Questionnaire
- Heterogeneity in:
 - Ages of children at intervention/exposure and outcome assessment
 - Child seafood intake (timing, type, amount, and duration)

Seafood intake during childhood/adolescence Social-emotional & behavioral development, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is available to determine the relationship between seafood intake during childhood and adolescence and social-emotional and behavioral development in children and adolescents.

Grade: Grade not assignable

Seafood intake during childhood/adolescence ADD/ADHD-like behavior

Summary of Evidence

- 2 articles from 2 RCTs (Norway)
 - No effect of fish meal, compared to meat meals, on ADD/ADHD-like behavior at 4 to 6-year olds and 14 to 15 years
- Difficult to determine a relationship due to:
 - Inadequate number of studies
 - Outcome assessment relied on parental-report

Seafood intake during childhood/adolescence ADD/ADHD-like behavior, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is available to determine the relationship between seafood consumption during childhood and adolescence and attention deficit disorder (ADD) or attention-deficit/hyperactivity disorder (ADHD)-like traits or behaviors.

Grade: Grade not assignable

Seafood intake during childhood/adolescence Autism Spectrum Disorder (ASD)

Draft Conclusion Statement

<u>No evidence</u> is available to determine the relationship between seafood intake during childhood and adolescence and autism spectrum disorder (ASD)-like traits or behaviors or ASD diagnosis.

Grade: Grade not assignable

Seafood intake during childhood/adolescence Academic Performance

1 article from 1 PCS (Sweden)

- Found a significant positive association between frequency of consumption of meals containing fish at 15 years and higher total school grade at 16 years
- Difficult to determine a conclusion due to inadequate number of studies and concern for risk of bias due to measurement of exposure and outcome

Seafood intake during childhood/adolescence Academic Performance, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is available to determine the relationship between seafood consumption during adolescence and academic performance in adolescents.

Grade: Grade not assignable

Seafood intake during childhood/adolescence Anxiety and Depression

2 PCS (Canada & UK)

- Diagnosis: significant, positive association between greater fish intake (10-11 years) and lower odds of diagnosis of internalizing disorder, including anxiety or depression, in children 10 to 14 years
- Symptoms: null association between fish intake (14.5 years) and depressive symptoms at 17.5 years
- Difficult to determine a relationship due to:
 - Inadequate number of studies
 - Inconsistent results
 - Little information describing the exposure

Seafood intake during childhood/adolescence Anxiety and Depression, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is available to determine the relationship between seafood consumption during childhood and adolescence and anxiety and depression in children and adolescents.

Grade: Grade not assignable

Seafood intake during childhood/adolescence Neurocognitive health in adulthood

Draft Conclusion Statement

<u>No evidence</u> is available to determine the relationship between seafood intake during childhood and adolescence and neurocognitive health (e.g., cognitive decline, anxiety, depression) in adulthood.

Grade: Grade not assignable

Seafood Question #3

What is the relationship between **seafood consumption** during <u>childhood and</u> <u>adolescence</u> and risk of **cardiovascular disease**?

Approach to Answer Question: NESR Systematic Review

Analytic Framework Seafood & Risk of CVD

Systematic review question: What is the relationship between seafood consumption during childhood and adolescence (up to 18 years of age) and risk of cardiovascular disease?

Key Confounders: Child sex, Child age, Race/ethnicity, Socioeconomic status, Non-fish dietary exposure to n-3 PUFAs, Smoking, Anthropometry, Family history of CVD Other factors considered: Key nutrients in seafood (e.g., n-3 PUFAs, iron, iodine, selenium, fish protein, vitamin D); Environmental

chemicals, e.g., mercury, persistent organic pollutants, and polychlorinated biphenyls; Blood and human milk biomarkers of seafood intake (e.g., n-3 PUFAs, and environmental pollutants)

Literature Search and Screening Results Seafood & Risk of CVD

46

2020 Dietary Guidelines Advisory **Committee:** Meeting 4

Seafood during

risk of CVD

Seafood intake during childhood/adolescence & Risk of CVD

4 total articles

- RCTs and PCS
- 2 articles from 2 RCTs (Oman & Mexico)
 - Ages: 10 12 years
 - Interventions:
 - 100 grams of oily fish versus cheese/salad sandwich 5 times per week for 12 weeks
 - 6, 7, or 8 grams of tuna (intervention frequency, duration and control condition not reported)
 - Intermediate outcomes only
 - Blood pressure and blood lipids

Seafood during childhood/adolescence and risk of CVD 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood intake during childhood/adolescence & Risk of CVD, continued

- 2 articles from 2 PCS
- Intermediate outcomes
 - 1 articles from 1 PCS (Denmark)
 - Exposure: Fish intake at 10 years (assessed using a food record)
 - Outcomes: Blood pressure and blood lipids
- End-point outcomes
 - 1 article from 1 PCS (UK)
 - Exposure: Assessed fish and oily fish intake at 7.5 years (7-day household inventory collected between 1937-1939)
 - Outcomes: Stroke mortality, CHD mortality measured during 60 years of follow-up

Seafood during childhood/adolescence and risk of CVD 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Seafood intake during childhood/adolescence and Risk of CVD, continued

- Results from the few available studies were not consistent
- Difficult to determine a relationship due to:
 - Inadequate number of studies
 - Serious methodological limitations of some studies

Seafood intake during childhood/adolescence Risk of CVD, continued

Draft Conclusion Statement

<u>Insufficient evidence</u> is currently available to accurately determine the relationship between seafood consumption during childhood and adolescence and risk of developing cardiovascular disease.

Grade: Grade not assignable

Seafood during childhood/adolescence and risk of CVD 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

Next Steps

1. Peer-Review and Draft Report

- **Seafood** during pregnancy and neurocognitive development
- Seafood during childhood/adolescence and neurocognitive development
- Seafood during childhood/adolescence and cardiovascular disease

2. Implement protocols

- Dietary fats and cardiovascular disease
- **Dietary fats** and neurocognitive development/health
- Dietary fats and all-cause mortality
- Dietary fats and cancer

Dietary Fats & Seafood 2020 Dietary Guidelines Advisory Committee: *Meeting 4*

2020 Dietary Guidelines Advisory Committee: Dietary Fats and Seafood

Members: Linda Snetselaar Regan Bailey

Support Staff: Rebecca MacIsaac Julia Quam Julie Obbagy Eve Stoody (DFO) Joan Sabaté Linda Van Horn Barbara Schneeman

Joanne Spahn Julia Kim Charlotte Bahnfleth Gisela Butera Janet de Jesus (DFO rep)

DietaryGuidelines.gov