DESCRIBE/EVALUATE NUTRIENTS OF PUBLIC HEALTH CONCERN: DATA ANALYSIS PROTOCOL

This document describes the protocol for data analysis to address the following question: Describe and evaluate nutrients of public health concern. This data analysis protocol is being developed by the 2020 Dietary Guidelines Advisory Committee, Data Analysis and Food Pattern Modeling Cross-Cutting Working Group with support from a federal interagency data analysis team (DAT).

This document describes the protocol, or plan, for how the data analysis is conducted.

The protocol provides:

- The analytic framework (p. 2) describes the overall scope of the question and approach used to describe food group and nutrient intakes
- The analytic plan (p. 5) details the data and subsequent included analyses
- The analysis results (p. 9) includes reports that describe the analytic methods and summarize results (e.g. data tables and figures)

This protocol is up-to-date as of: 07/03/2019.
ANALYTIC FRAMEWORK

The analytic framework describes the overall scope of the analyses, including the population and type of analyses and data sources identified to answer the question. It also includes the definitions of key terms.

Question: Describe/evaluate nutrients of public health concern.

A three pronged approach will be used to determine nutrients of public health concern:

1. Estimate prevalence of inadequate and excessive nutrient intakes by comparing current distribution of nutrient intakes in the U.S. population to Dietary Reference Intakes published by the National Academies of Sciences. Nutrient intakes from food and beverages alone as well as the additional contribution of nutrient from intakes of dietary supplements.
 - For nutrients with an Estimated Average Requirement (EAR), the estimated prevalence of inadequate intakes will be determined using the EAR cut-point method for nutrients with an EAR. Iron in menstruating women will be evaluated with the probability approach.
 - For nutrients with an Adequate Intake (AI), mean nutrient intakes will be compared to the AI to determine the estimated prevalence above the AI.
 - For nutrients with a Tolerable Upper Intake Level (UL) or Chronic Disease Risk Reduction (CDRR) intake, the estimated prevalence of potentially excessive intakes will be determined by examining the percent of the population with intakes above the UL or CDRR.
 - For nutrients with an Acceptable Macronutrient Distribution Range (AMDR), the estimated prevalence of the population with intakes outside of the range will be evaluated.
 - Percent energy contributed from added sugars and saturated fat will be compared to the 2015-2020 Dietary Guidelines for Americans recommendations of <10% of total energy from each nutrient.

2. When available, consider biological endpoints or validated surrogate endpoints such as biochemical indices of nutrient status with valid cut-points in addition to dietary intakes of nutrients.

3. Consider scientific evidence on the relationship between nutrient inadequacy or excess and clinical health consequences (e.g. cardiovascular disease, cancer).

Population: Nationally representative sample of the U.S. population.

Life stages:
- Infants and toddlers (birth to 24 months)
- Children and adolescents (ages 2-18 years)
- Adults (ages 19-64 years)
- Pregnant women (ages 20-44 years) self-reported pregnancy status and/or positive urinary pregnancy test
- Lactating women (ages 20-44 years)
Older adults (ages 65 years and older)

*NOTE: Age ranges may vary and will be specified in analytic plan

Demographic subgroups:
- Sex
- Race-ethnicity
- Socioeconomic status i.e. income, education
- Household food security

Data Source:
Biochemical Indicators
National Health and Nutrition Examination Survey (NHANES); cross-sectional, nationally representative biomarkers of nutrient status.
Data years: 2013-2016, exceptions to these data years will be noted.

Nutrient Intakes
What We Eat in America, National Health and Nutrition Examination Survey (WWEIA, NHANES); cross-sectional, nationally representative dietary intake data.
Data years: 2013-2016, exceptions to these data years will be noted.

The most recent cycle of NHANES data collected in 2015-2016 will be the most current data available for consideration by the Committee. Two cycles will be combined (WWEIA, NHANES 2013-2016) to calculate distributions of nutrient intakes and other analyses when noted.

Key definitions:
Dietary Reference Intakes (DRI) – nutrient reference values developed by the National Academies of Sciences, Engineering and Medicine that are specified on the basis of age, sex and life stage and cover more than 40 nutrient substances.

- **Acceptable Macronutrient Distribution Range (AMDR)** – is the range of intake for a particular energy source that is associated with reduced risk of chronic disease while providing intakes of essential nutrients. If an individual consumes in excess of the AMDR, there is a potential of increasing the risk of chronic diseases and/or insufficient intakes of essential nutrients.
- **Estimated Average Requirement (EAR)** – the average daily nutrient intake level estimated to meet the requirements of half of the healthy individuals in a group.
- **Recommended Dietary Allowance (RDA)** – average daily dietary intake level sufficient to meet the nutrient requirements of nearly all (97-98%) healthy individuals in a group.
- **Adequate Intake (AI)** – established when evidence is insufficient to develop an RDA and is set at a level assumed to ensure nutritional adequacy.
- **Tolerable Upper Intake Level (UL)** – maximum daily intake unlikely to cause adverse health effects to almost all individuals in the general population.
- **Chronic Disease Risk Reduction (CDRR)** – lowest level of intake for which there is sufficient strength of evidence to characterize a chronic disease risk reduction.
Key definitions continued:

Nutrients of public health concern – Nutrients that are overconsumed (compared to the DRI UL or CDRR or AMDR or percent of energy recommendations and to biological measures of the nutrient when available) or under consumed (compared to the DRI EAR/AI/AMDR and to biological measures of the nutrient when available), and linked in the scientific literature to adverse health outcomes in the general population or in a subpopulation.
ANALYTIC PLAN

To describe and evaluate nutrients of public health concern in the U.S. population for each life-stage, analysis will quantify intake of nutrients using WWEIA, NHANES dietary recall data and corresponding nutrient values from the USDA Food and Nutrient Database from Dietary Studies and the Dietary Supplement Database. Biochemical indicators of nutrition status will be assessed using laboratory data from NHANES.

Birth to less than 12 months of age

The analytic plan for infants and toddlers is still in discussion.

Children (1-18 years, exceptions noted)

- Usual intake distributions of nutrient intakes from foods and beverage among children ages 1-18 years, by sex using NHANES 2013-2016
- Usual intake distributions of nutrient intakes from foods and beverage and dietary supplements among children ages 1-18 years, by sex using NHANES 2013-2016
- Prevalence (in percent) of low serum ferritin concentration for children in the U.S. population aged 1–19 years, NHANES, 2013–2016
- Prevalence (in percent) of high serum ferritin concentration for children in the U.S. population aged 1–19 years, NHANES, 2013–2016
- Prevalence (in percent) of high serum soluble transferrin receptor concentration in the U.S. population of children 1-5 years, females 12–19 years, NHANES 2013-2016
- Prevalence (in percent) of low folate (RBC) concentration in the U.S. population of children ages 1 – 18 years, by sex, NHANES 2013-2016
- Prevalence (in percent) of low serum folate concentration in the U.S. population of children ages 1–18 years, by sex, NHANES 2013-2016
- Prevalence (in percent) of low serum copper concentration in the U.S. population of children ages 6-18 years, NHANES 2013-2016
- Prevalence (in percent) of low serum zinc concentration in the U.S. population of children ages 6-18 years, by sex NHANES 2013-2016
- Prevalence (in percent) of low vitamin D (serum 25-hydroxyvitamin D) in the U.S. population of children ages 1-18 years, by sex NHANES 2013-2016
- Prevalence (in percent) of low serum vitamin A and/or carotenoids in the U.S. population of children ages 6-19 years, NHANES 2005-2006
- Prevalence (in percent) of low serum vitamin C in the U.S. population of children ages 6-19 years, NHANES 2003-2006
- Prevalence (in percent) of low serum vitamin E in the U.S. population of children ages 6-19 years, NHANES 2005-2006
- Prevalence (in percent) of low serum vitamin B12 in the U.S. population of children ages 1-19 years, NHANES 2003-2006
- Prevalence (in percent) of low serum vitamin B6 (serum pyridoxal-5'-phosphate) in the U.S. population of children ages 1-19 years, by sex NHANES 2005-2006

Question: Describe/evaluate nutrients of public health concern.
Adults (20 years and older, exceptions noted)

Usual intake distributions of nutrient intakes from foods and beverage among adults ages 19 years and older, by sex using NHANES 2013-2016

Usual intake distributions of nutrient intakes from foods and beverage and dietary supplements among adults ages 19 years and older, by sex using NHANES 2013-2016

Prevalence (in percent) of low serum ferritin concentration for women in the U.S. population aged 20–49 years, NHANES 2013-2016

Prevalence (in percent) of high serum ferritin concentration for women in the U.S. population aged 20–49 years, NHANES 2013-2016

Prevalence (in percent) of high serum soluble transferrin receptor concentration for women in the U.S. population aged 20–49 years, NHANES 2013-2016

Prevalence (in percent) of low folate (RBC) concentration in the U.S. population of adults ages 19 years and older, by sex, NHANES 2013-2016

Prevalence (in percent) of low serum folate concentration in the U.S. population of adults ages 19 years and older, by sex, NHANES 2013-2016

Prevalence (in percent) of high unmetabolized folic acid concentrations in the U.S. population of adults 19 and older, by sex, NHANES 2011-2012

Prevalence (in percent) of low serum copper concentration in the U.S. population of adults ages 19 years and older, by sex, NHANES 2013-2016

Prevalence (in percent) of low serum zinc concentration in the U.S. population of adults ages 19 years and older, by sex, NHANES 2013-2016

Prevalence (in percent) of low vitamin B12 status in the U.S. population of adults ages 19 years and older, by age and sex, NHANES 2013-2014

Prevalence (in percent) of high methylmalonic acid in the U.S. population of adults ages 19 years and older, by age and sex, NHANES 2013-2014

Prevalence (in percent) of low vitamin D (serum 25-hydroxyvitamin D) status in the U.S. population of adults ages 20-70 years, by sex, NHANES 2013-2014

Prevalence (in percent) of low serum vitamin A and/or carotenoids in the U.S. population of females ages 20-59 years, NHANES 2005-2006

Prevalence (in percent) of low serum vitamin C in the U.S. population of adults ages 20-59 years, by sex, NHANES 2003-2006

Prevalence (in percent) of low serum vitamin E in the U.S. population of adults ages 40-59 years, by sex, NHANES 2005-2006

Prevalence (in percent) of low serum vitamin B6 (serum pyridoxal-5’-phosphate) in the U.S. population of adults ages 20-59 years, by sex, NHANES 2005-2006
Pregnant Women

- Usual intake distributions of nutrient intakes from foods and beverage among pregnant women using NHANES 2013-2016
- Usual intake distributions of nutrient intakes from foods and beverage and dietary supplements among pregnant women using NHANES 2013-2016
- Prevalence (in percent) of low serum ferritin concentration for pregnant women in the U.S. population, NHANES 2013-2016
- Prevalence (in percent) of high serum ferritin concentration for pregnant women in the U.S. population aged 20–49 years, NHANES 2013-2016
- Prevalence (in percent) of high serum soluble transferrin receptor concentration for pregnant women in the U.S. population, NHANES 2013-2016
- Prevalence (in percent) of low folate (RBC) concentration in the U.S. population of pregnant women, NHANES 2013-2016
- Prevalence (in percent) of low serum folate concentration in the U.S. population of pregnant women, NHANES 2013-2016
- Prevalence (in percent) of high unmetabolized folic acid concentrations in the U.S. population of pregnant women, NHANES 2011-2012
- Prevalence (in percent) of low serum copper concentration in the U.S. population of pregnant women, NHANES 2013-2016
- Prevalence (in percent) of low serum zinc concentration in the U.S. population of pregnant women, NHANES 2013-2016
- Prevalence (in percent) of low vitamin B12 status in the U.S. population of pregnant women, NHANES 2013-2014
- Prevalence (in percent) of high methylnalonic acid in the U.S. population of pregnant women, NHANES 2013-2014
- Prevalence (in percent) of low vitamin D (serum 25-hydroxyvitamin D) status in the U.S. population of pregnant women, NHANES 2013-2014
- Median urinary iodine status among pregnant women in the U.S., NHANES 2013-2016
Lactating Women

<table>
<thead>
<tr>
<th>Description</th>
<th>NHANES Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual intake distributions of nutrient intakes from foods and beverage among lactating women using NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Usual intake distributions of nutrient intakes from foods and beverage and dietary supplements among lactating women using NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low serum ferritin concentration for lactating women in the U.S. population, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of high serum ferritin concentration for lactating women in the U.S. population, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of high serum soluble transferrin receptor concentration for lactating women in the U.S. population, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low folate (RBC) concentration in the U.S. population of lactating women, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low serum folate concentration in the U.S. population of lactating women, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low serum copper concentration in the U.S. population of lactating women, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low serum zinc concentration in the U.S. population of lactating women, NHANES 2013-2016</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low vitamin B12 status in the U.S. population of lactating women, NHANES 2013-2014</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of high methylmalonic acid in the U.S. population of lactating women, NHANES 2013-2014</td>
<td></td>
</tr>
<tr>
<td>Prevalence (in percent) of low vitamin D (serum 25-hydroxyvitamin D) status in the U.S. population of lactating women, NHANES 2013-2014</td>
<td></td>
</tr>
</tbody>
</table>
ANALYSIS RESULTS

This protocol will be updated with the links to the methods and results for each analysis used to describe and evaluate food group and nutrient intakes after the analytic plan has been finalized and implemented.